9,465 research outputs found

    Positional information, positional error, and read-out precision in morphogenesis: a mathematical framework

    Full text link
    The concept of positional information is central to our understanding of how cells in a multicellular structure determine their developmental fates. Nevertheless, positional information has neither been defined mathematically nor quantified in a principled way. Here we provide an information-theoretic definition in the context of developmental gene expression patterns and examine which features of expression patterns increase or decrease positional information. We connect positional information with the concept of positional error and develop tools to directly measure information and error from experimental data. We illustrate our framework for the case of gap gene expression patterns in the early Drosophila embryo and show how information that is distributed among only four genes is sufficient to determine developmental fates with single cell resolution. Our approach can be generalized to a variety of different model systems; procedures and examples are discussed in detail

    Rapid changes in ice core gas records Part 2: Understanding the rapid rise in atmospheric CO2 at the onset of the Bølling/Allerød

    Get PDF
    During the last glacial/interglacial transition the Earth's climate underwent rapid changes around 14.6 kyr ago. Temperature proxies from ice cores revealed the onset of the Bølling/Allerød (B/A) warm period in the north and the start of the Antarctic Cold Reversal in the south. Furthermore, the B/A is accompanied by a rapid sea level rise of about 20 m during meltwater pulse (MWP) 1A, whose exact timing is matter of current debate. In situ measured CO<sub>2</sub> in the EPICA Dome C (EDC) ice core also revealed a remarkable jump of 10&plusmn;1 ppmv in 230 yr at the same time. Allowing for the age distribution of CO<sub>2</sub> in firn we here show, that atmospheric CO<sub>2</sub> rose by 20–35 ppmv in less than 200 yr, which is a factor of 2–3.5 larger than the CO<sub>2</sub> signal recorded in situ in EDC. Based on the estimated airborne fraction of 0.17 of CO<sub>2</sub> we infer that 125 Pg of carbon need to be released to the atmosphere to produce such a peak. Most of the carbon might have been activated as consequence of continental shelf flooding during MWP-1A. This impact of rapid sea level rise on atmospheric CO<sub>2</sub> distinguishes the B/A from other Dansgaard/Oeschger events of the last 60 kyr, potentially defining the point of no return during the last deglaciation

    Structural Descriptions in Human-Assisted Robot Visual Learning

    Get PDF
    The paper presents an approach to using structural descriptions, obtained through a human-robot tutoring dialogue, as labels for the visual object models a robot learns. The paper shows how structural descriptions enable relating models for different aspects of one and the same object, and how being able to relate descriptions for visual models and discourse referents enables incremental updating of model descriptions through dialogue (either robot- or human-initiated). The approach has been implemented in an integrated architecture for human-assisted robot visual learning

    How can Australian businesses win in the information technology stakes?

    No full text
    Australia is one of the highest ranking countries in the world for use of information technology (IT), being third highest for IT investment among OECD (Organisation for Economic Co-operation and Development) countries, yet there are wide differences within Australia in IT use. Some Australian businesses are winning higher productivity gains from the use of IT than others. Why? How can other organisations do better? The lecture will show how above average gains have occurred in some leading firms and in industries such as the Wholesale Trade and Finance and Insurance. Case studies will show how some firms have reaped the benefits of IT investment. Environmental pre-conditions affecting the odds for success, including government policies and infrastructure will also be highlighted. The aim of the lecture is to show how all organisations can adapt the lessons learned in order to improve their own business's position in the competitive race

    Dynamic Kerr effect responses in the Terahertz-range

    Full text link
    Dynamic Kerr effect measurements provide a simple realization of a nonlinear experiment. We propose a field-off experiment where an electric field of one or several sinusoidal cycles is applied to a sample in thermal equilibrium. Afterwards, the evolution of the polarizability is measured. If such an experiment is performed in the Terahertz-range it might provide valuable information about the low-frequency dynamics in disordered systems. We treat these dynamics in terms of a Brownian oscillator model and calculate the Kerr effect response. It is shown that frequency-selective behaviour can be expected. In the interesting case of underdamped vibrational motion we find that the frequency-dependence of the phonon-damping can be determined from the experiment. Also the behaviour of overdamped relaxational modes is discussed. For typical glassy materials we estimate the magnitude of all relevant quantities, which we believe to be helpful in experimental realizations.Comment: 26 pages incl. 5 figure

    Real Exchange Rates, Preferences, and Incomplete Markets: Evidence, 1961-2001

    Get PDF
    Many international macroeconomic models link the real exchange rate to a ratio of marginal utilities. We examine this link empirically, allowing the marginal utility of consumption to depend on government expenditure, real money balances, or external habit. We also consider two environments with incomplete asset markets; one with exogenously missing markets but an endogenous discount rate that anchors the distribution of wealth and one with endogenous market segmentation. Although none of these satisfies theoretical and over-identifying restrictions for every country, utility with external habit persistence provides the best match with real exchange rates for OECD countries between 1961 and 2001.real exchange rate, consumption, marginal utility

    High-Resolution Structure of the N-Terminal Endonuclease Domain of the Lassa Virus L Polymerase in Complex with Magnesium Ions

    Get PDF
    Lassa virus (LASV) causes deadly hemorrhagic fever disease for which there are no vaccines and limited treatments. LASV-encoded L polymerase is required for viral RNA replication and transcription. The functional domains of L–a large protein of 2218 amino acid residues–are largely undefined, except for the centrally located RNA-dependent RNA polymerase (RdRP) motif. Recent structural and functional analyses of the N-terminal region of the L protein from lymphocytic choriomeningitis virus (LCMV), which is in the same Arenaviridae family as LASV, have identified an endonuclease domain that presumably cleaves the cap structures of host mRNAs in order to initiate viral transcription. Here we present a high-resolution crystal structure of the N-terminal 173-aa region of the LASV L protein (LASV L173) in complex with magnesium ions at 1.72 Å. The structure is highly homologous to other known viral endonucleases of arena- (LCMV NL1), orthomyxo- (influenza virus PA), and bunyaviruses (La Crosse virus NL1). Although the catalytic residues (D89, E102 and K122) are highly conserved among the known viral endonucleases, LASV L endonuclease structure shows some notable differences. Our data collected from in vitro endonuclease assays and a reporter-based LASV minigenome transcriptional assay in mammalian cells confirm structural prediction of LASV L173 as an active endonuclease. The high-resolution structure of the LASV L endonuclease domain in complex with magnesium ions should aid the development of antivirals against lethal Lassa hemorrhagic fever

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5
    • …
    corecore